On Proximity of Rayleigh Quotients for Different Vectors and Ritz Values Generated by Different Trial Subspaces ?

نویسندگان

  • Andrew V. Knyazev
  • Merico E. Argentati
چکیده

The Rayleigh quotient is unarguably the most important function used in the analysis and computation of eigenvalues of symmetric matrices. The Rayleigh-Ritz method finds the stationary values of the Rayleigh quotient, called Ritz values, on a given trial subspace as optimal, in some sense, approximations to eigenvalues. In the present paper, we derive upper bounds for proximity of the Ritz values in terms of the proximity of the trial subspaces without making an assumption that the trial subspace is close to an invariant subspace. The main result is that the absolute value of the perturbations in the Ritz values is bounded by a constant times the gap between the original trial subspace and its perturbation. The constant is the spread in the matrix spectrum, i.e. the difference between the largest and the smallest eigenvalues of the matrix. It’s shown that the constant cannot be improved. We then generalize this result to arbitrary unitarily invariant norms, but we have to increase the constant by a factor of √ 2. Our results demonstrate, in particular, the stability of the Ritz values with respect to a perturbation in the trial subspace.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Refined Harmonic Lanczos Bidiagonalization Method and an Implicitly Restarted Algorithm for Computing the Smallest Singular Triplets of Large Matrices

The harmonic Lanczos bidiagonalization method can be used to compute the smallest singular triplets of a large matrix A. We prove that for good enough projection subspaces harmonic Ritz values converge if the columns of A are strongly linearly independent. On the other hand, harmonic Ritz values may miss some desired singular values when the columns of A are almost linearly dependent. Furthermo...

متن کامل

New estimates for Ritz vectors

The following estimate for the Rayleigh–Ritz method is proved: |λ̃−λ||(ũ,u)| ≤ ‖Aũ− λ̃ũ‖sin∠{u;Ũ}, ‖u‖= 1. Here A is a bounded self-adjoint operator in a real Hilbert/euclidian space, {λ,u} one of its eigenpairs, Ũ a trial subspace for the Rayleigh–Ritz method, and {λ̃, ũ} a Ritz pair. This inequality makes it possible to analyze the fine structure of the error of the Rayleigh–Ritz method, in part...

متن کامل

Rayleigh-Ritz Majorization Error Bounds with Applications to FEM

The Rayleigh-Ritz (RR) method finds the stationary values, called Ritz values, of the Rayleigh quotient on a given trial subspace as approximations to eigenvalues of a Hermitian operator A. If the trial subspace is A-invariant, the Ritz values are exactly some of the eigenvalues of A. Given two subspaces X and Y of the same finite dimension, such that X is A-invariant, the absolute changes in t...

متن کامل

Vibration Analysis for Rectangular Plate Having a Circular Central Hole with Point Support by Rayleigh-Ritz Method

In this paper, the transverse vibrations of rectangular plate with circular central hole have been investigated and the natural frequencies of the mentioned plate with point supported by Rayleigh-Ritz Method have been obtained. In this research, the effect of the hole is taken into account by subtracting the energies of the hole domain from the total energies of the whole plate. To determine th...

متن کامل

Rayleigh-ritz Majorization Error Bounds with Applications to Fem and Subspace Iterations

The Rayleigh-Ritz method finds the stationary values, called Ritz values, of the Rayleigh quotient on a given trial subspace as approximations to eigenvalues of a Hermitian operator A. If the trial subspace is A-invariant, the Ritz values are exactly some of the eigenvalues of A. Given two subspaces X and Y of the same finite dimension, such that X is A-invariant, the absolute changes in the Ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004